#f'(x)=lim_(h->0) (f(x-h)-f(x))/h#
#f(x)=1/(1-x)#
#f(x+h)=1/(1-(x+h))=1/(1-x-h)#
#f'(x)=lim_(h->0) (1/(1-x-h)-1/(1-x))/h#
#f'(x)=lim_(h->0) (1/(1-x-h) * (1-x)/(1-x) -1/(1-x)*(1-x-h)/(1-x-h))/h#
Find the least common denominator
#f'(x)=lim_(h->0) ((1-x)/((1-x-h)(1-x))-(1-x-h)/((1-x-h)(1-x)))/h#
Distribute the negative in the numerator of the complex fraction
#f'(x)=lim_(h->0) ((1-x-1+x+h)/((1-x-h)(1-x)))/h#
Simplify the numerator of the complex fraction
#f'(x)=lim_(h->0) ((h)/((1-x-h)(1-x)))/h#
Division is equivalent to multiplying by the reciprocal
#f'(x)=lim_(h->0) (h)/((1-x-h)(1-x))*1/h#
Cross cancel the #h# factors
#f'(x)=lim_(h->0) (1)/((1-x-h)(1-x))#
Substitute in the value of 0 for #h# and simplify
#=(1)/((1-x-0)(1-x))#
#=(1)/((1-x)(1-x))#
#=1/(1-x)^2#