f'(x)=lim_(h->0) (f(x+h)-f(x))/h
f(x)=sqrt(2+6x)
f(x+h)=sqrt(2+6(x+h))=sqrt(2+6x+6h
Make the substitutions for f(x) and f(x+h)
f'(x)=lim_(h->0) (sqrt(2+6x+6h)-sqrt(2+6x))/h
Rationalize the numerator
=lim_(h->0) (sqrt(2+6x+6h)-sqrt(2+6x))/h*(sqrt(2+6x+6h)+sqrt(2+6x))/(sqrt(2+6x+6h)+sqrt(2+6x))
Remember the difference of perfect squares for the numerator
=lim_(h->0) ((2+6x+6h)-(2+6x))/(h*sqrt(2+6x+6h)+sqrt(2+6x))
Distribute the negative
=lim_(h->0) (2+6x+6h-2-6x)/(h*sqrt(2+6x+6h)+sqrt(2+6x))
Simplify numerator
=lim_(h->0) (6h)/(h*sqrt(2+6x+6h)+sqrt(2+6x))
Cancel the factors of h
=lim_(h->0) (6)/(sqrt(2+6x+6h)+sqrt(2+6x))
Substitute in the value of 0 for h and then simplify
=(6)/(sqrt(2+6x+6(0))+sqrt(2+6x))
=(6)/(sqrt(2+6x)+sqrt(2+6x))
=(6)/(2sqrt(2+6x))
=3/sqrt(2+6x)