How do you find a numerical value of one trigonometric function of x given cotx+sinx=-cosxcotx?

1 Answer
Nov 12, 2016

:.x=+-pi+2pin

Explanation:

cotx+sinx=-cosxcotx

cos x/sin x+sinx=-cosx cosx/sinx

(cos x+sin^2x)/sinx=-cos^2x/sinx

(cos x+sin^2x)/sinx *sinx=-cos^2x/sinx *sinx

(cos x+sin^2x)/cancelsinx *cancelsinx=-cos^2x/cancelsinx *cancelsinx

cos x+sin^2x=-cos^2x

cos x+sin^2x+cos^2x=0

cosx+1=0

cosx=-1

x=cos^-1 (-1)

:.x=+-pi+2pin