How do you find a numerical value of one trigonometric function of x given (1+tanx)/(1+cotx)=21+tanx1+cotx=2? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Nov 12, 2016 x=1.107148718+pinx=1.107148718+πn Explanation: (1+tanx)/(1+cotx) = 21+tanx1+cotx=2 (1+tanx)/(1+1/tanx) = 21+tanx1+1tanx=2 (1+tanx)/((tanx+1)/tanx) = 21+tanxtanx+1tanx=2 (1+tanx)*tanx/(tanx+1) = 2(1+tanx)⋅tanxtanx+1=2 cancel(1+tanx)*tanx/cancel(tanx+1) = 2 tanx=2 x=tan^-1 2 x=1.107148718+pin Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 11536 views around the world You can reuse this answer Creative Commons License