How do you find a numerical value of one trigonometric function of x given (1+tanx)/(1+cotx)=21+tanx1+cotx=2?

1 Answer
Nov 12, 2016

x=1.107148718+pinx=1.107148718+πn

Explanation:

(1+tanx)/(1+cotx) = 21+tanx1+cotx=2

(1+tanx)/(1+1/tanx) = 21+tanx1+1tanx=2

(1+tanx)/((tanx+1)/tanx) = 21+tanxtanx+1tanx=2

(1+tanx)*tanx/(tanx+1) = 2(1+tanx)tanxtanx+1=2

cancel(1+tanx)*tanx/cancel(tanx+1) = 2

tanx=2

x=tan^-1 2

x=1.107148718+pin