How do you find a numerical value of one trigonometric function of x given (1+cosx)/sinx+sinx/(1+cosx)=41+cosxsinx+sinx1+cosx=4?

1 Answer
Nov 12, 2016

:.x=pi/6 +2pin or x=(5pi)/6 +2pin

Explanation:

(1+cosx)/sinx + sinx/(1+cosx)=4

((1+cosx)(1+cosx) + sinxsinx)/((1+cosx)sinx)=4

(1+2cosx+cos^2x+ sin^2x)/((1+cosx)sinx)=4

(1+2cosx+1)/((1+cosx)sinx)=4

(2+2cosx)/((1+cosx)sinx)=4

(2(1+cosx))/((1+cosx)sinx)=4

(2cancel(1+cosx))/(cancel(1+cosx)sinx)=4

2/sinx=4

2=4sinx

2/4=sinx

1/2=sinx

sin^-1(1/2)=x

:.x=pi/6 +2pin or x=(5pi)/6 +2pin