How do you differentiate f(x)=e^(secsqrtx)f(x)=esecx using the chain rule.?

1 Answer
Dec 11, 2015

f'(x)=(sec(sqrtx)tan(sqrtx)e^(sec(sqrtx)))/(2sqrtx)

Explanation:

According to the chain rule,

f'(x)=e^(secsqrtx)d/dx[secsqrtx]

First, find the internal derivative (again using the chain rule).

d/dx[secsqrtx]=secsqrtxtansqrtxd/dx[sqrtx]

=1/2x^(-1/2)secsqrtxtansqrtx

=(secsqrtxtansqrtx)/(2sqrtx)

Plug this back in to find f'(x).

f'(x)=(e^(secsqrtx))(secsqrtxtansqrtx)/(2sqrtx)

f'(x)=(sec(sqrtx)tan(sqrtx)e^(sec(sqrtx)))/(2sqrtx)