How do you convert (-3, 3)(3,3) into polar coordinates?

1 Answer
Apr 20, 2018

(-3,3)to(3sqrt2,(3pi)/4)(3,3)(32,3π4)

Explanation:

"to convert from "color(blue)"cartesian to polar"to convert from cartesian to polar

"that is "(x,y)to(r,theta)" where"that is (x,y)(r,θ) where

•color(white)(x)r=sqrt(x^2+y^2)xr=x2+y2

•color(white)(x)theta=tan^-1(y/x);-pi< theta<= pixθ=tan1(yx);π<θπ

"here "x=-3" and y=3here x=3andy=3

rArrr=sqrt((-3)^2+3^2)=sqrt18=3sqrt2r=(3)2+32=18=32

(-3,3)" is in the second quadrant so "theta" must be in the "(3,3) is in the second quadrant so θ must be in the
"second quadrant"second quadrant

theta=tan^-1(1)=pi/4larrcolor(red)"related acute angle"θ=tan1(1)=π4related acute angle

rArrtheta=pi-pi/4=(3pi)/4larrcolor(red)"in second quadrant"θ=ππ4=3π4in second quadrant

rArr(-3,3)to(3sqrt2,(3pi)/4)(3,3)(32,3π4)