How do you convert #(2,2)# into polar forms? Precalculus Polar Coordinates Converting Coordinates from Rectangular to Polar 1 Answer P dilip_k Mar 18, 2016 #(2sqrt2,pi/4)# Explanation: #x=rcostheta=>2=rcostheta# #y=rsintheta=>2=rsintheta# combining these two #tantheta=2/2=1=>theta =arctan1=pi/4# #r=sqrt(x^2+y^2)=sqrt(2^2+2^2)=2sqrt2# hence polar coordinate #(2sqrt2,pi/4)# Answer link Related questions What are the polar coordinates of #(0, -2)#? What are the polar coordinates of #(-4, 0)#? What are the polar coordinates of #(3, 4)#? What are the polar coordinates of #(-2,0)#? How do I convert Cartesian coordinates to polar coordinates? How do I find the polar form of #a+bi#? How do I find the polar form of #3sqrt2 - 3sqrt2i#? How do you change (4, -1) from rectangular to cylindrical coordinates between [0, 2π)? How do you change (0,3,-3) from rectangular to spherical coordinates? How do you find the rectangular coordinates if you given the cylindrical coordinate #(5, pi/6, 5)#? See all questions in Converting Coordinates from Rectangular to Polar Impact of this question 1790 views around the world You can reuse this answer Creative Commons License