How do you complete the square to solve x2+5x+6=0?

1 Answer
Jun 16, 2015

You can complete the square by first getting the form x2+kx=h.

x2+5x=6

Then just add and subtract a certain value that is equal to (k2)2. Just remember that the function is x2+kx, so k may be negative, but the added (k2)2 will always be positive.

x2+5x+(52)2=(52)26

(x+52)2=254244=14

(x+52)214=0

graph{(x+5/2)^2 - 1/4 [-10, 10, -5, 5]}

If you wanted to solve this:

(x+52)2=14

x+52=±14

Thus:
x+52=±14

x=±(14)52

x=±(12)52

x=1252=2

x=1252=3

(2)2+5(2)+6=410+6=0
(3)2+5(3)+6=915+6=0

You could just factor, though...

(x+2)(x+3)=x2+2x+3x+6=x2+5x+6