How do you complete the square for y=3x^2-24x+10y=3x224x+10?

1 Answer
Jun 7, 2018

y = 3(x-4)^2 -38 y=3(x4)238

Explanation:

Easiest way to complete the square is to use formula for vertex form:
y = a(x-h)^2 + k y=a(xh)2+k
where h = frac{-b}{2a} h=b2a and k = \frac{-b^2}{4a} + c k=b24a+c

a = 3, b =-24, c = 10 a=3,b=24,c=10
h= \frac{-(-24)}{2(3)} = 4 h=(24)2(3)=4
k = \frac{-(-24)^2}{4(3)} + 16 = -48 + 10 = -38 k=(24)24(3)+16=48+10=38

Thus the vertex form is y = 3(x-4)^2 -38 y=3(x4)238