How do you complete the square for x^2 + 12x?

1 Answer
May 17, 2015

The answer is x=0; x=-12 .

Problem: Complete the square for x^2+12x.

Rewrite the equation as a trinomial.

x^2+12x+0

Move 0 to the right-hand side.

x^2+12x=0

Divide the coefficient of the x-term by 2, then square the result. Add the result to both sides.

12/2=6; 6^2=36

x^2+12x+36=36

Factor the perfect square trinomial x^2+12x+36 on the left-hand side.

(x+6)^2=36

Take the square root of both sides and solve for x.

sqrt((x+6)^2)=+-sqrt36 =

x+6=+-6

x=-6+6=0

x=-6-6=-12

Check

If x=0:

(0)^2+12(0)=0

0=0

If x=-12:

(-12)^2+12(-12)=0

144-144=0

0=0