How do you complete the square for 3x^2 +18x + 53x2+18x+5?

2 Answers
Apr 5, 2018

3(x+3)^2-223(x+3)222

Explanation:

3x^2+18x+53x2+18x+5

take out common factor to make coefficient x^2=1x2=1

=3(x^2+6x)+5=3(x2+6x)+5

now CTS as normal inside the bracket as follows

=3(x^2+6x+3^2-3^2)+5=3(x2+6x+3232)+5

=3((x+3)^2-9)+5=3((x+3)29)+5

=3(x+3)^2-27+5=3(x+3)227+5

=3(x+3)^2-22=3(x+3)222

Apr 5, 2018

3(x + 3)^2 - 223(x+3)222

Explanation:

Before completing the square a must equal 1, so first we divide all terms by 3.

= (3x^2)/3 + (18x)/3 + (5)/33x23+18x3+53

= 3(x^2 + 6x + 5/3)3(x2+6x+53)

= 3(x^2 + 6x +(6/2)^2 - (6/2)^2 + 5/3)3(x2+6x+(62)2(62)2+53)

= 3((x^2 + 6x + 9) - 9 + 5/3)3((x2+6x+9)9+53)

= 3((x^2 + 6x + 9) - 27/3 + 5/3)3((x2+6x+9)273+53)

= 3((x^2 + 6x + 9) - 22/3)3((x2+6x+9)223)

(x^2 + 2xy + y^2) = (x + y)^2(x2+2xy+y2)=(x+y)2, so...

= 3((x + 3)^2 - 22/3)3((x+3)2223)

= 3(x + 3)^2 - 223(x+3)222