How do i prove that csc 2x+cot 2x=cot x?

I tried doing it:

1/(sin2x)+1/(tan2x)

=1/(2sinx cost)+1/(2tan x/(1-tan^2 x)

=1/(2 sin x cos x)+(1-tan^2 x)/(2 tan x

Can someone help please?

1 Answer
Nov 21, 2017

See the proof below

Explanation:

We need

cos2x=1-2sin^2x

tan2x=(sin2x)/(cos2x)

cotx=cosx/sinx

cscx=1/sinx

Therefore,

LHS=csc2x+cot2x=1/(sin2x)+(cos2x)/(sin2x)

=(1+cos2x)/(sin2x)

=(1+1-2sin^2x)/(2sinxcosx)

=(2(1-sin^2x))/(2sinxcosx)

=cos^2x/(sinxcosx)

=cosx/sinx

=cotx

=RHS

QED