How do I prove that 2 sin ((C+D)/2) cos ((C-D)/2) = sin C+sin D?
2 Answers
Explanation:
"using the "color(blue)"trigonometric identities"
•color(white)(x)sin(A+B)=sinAcosB+cosAsinB
•color(white)(x)sin(A-B)=sinAcosB-cosAsinB
"Adding the 2 equations gives"
sin(A+B)+sin(A-B)=2sinAcosB
"Subtracting the 2 equations gives"
sin(A+B)-sin(A-B)=2cosAsinB
"let "C=A+B" and "D=A-B
rArrA=(C+D)/2" and "B=(C-D)/2
rArrsinC+sinD=2sin((C+D)/2)cos((C-D)/2)
See the proof below
Explanation:
We need
Therefore,