How do I prove that 2 sin ((C+D)/2) cos ((C-D)/2) = sin C+sin D?

2 Answers
Nov 20, 2017

"see explanation"

Explanation:

"using the "color(blue)"trigonometric identities"

•color(white)(x)sin(A+B)=sinAcosB+cosAsinB

•color(white)(x)sin(A-B)=sinAcosB-cosAsinB

"Adding the 2 equations gives"

sin(A+B)+sin(A-B)=2sinAcosB

"Subtracting the 2 equations gives"

sin(A+B)-sin(A-B)=2cosAsinB

"let "C=A+B" and "D=A-B

rArrA=(C+D)/2" and "B=(C-D)/2

rArrsinC+sinD=2sin((C+D)/2)cos((C-D)/2)

Nov 20, 2017

See the proof below

Explanation:

We need

sin(a+b)=sinacosb+sinbcosa

cos(a-b)=cosacosb+sinasinb

sin^2a+cos^2a=1

sin2a=2sinacosa

Therefore,

LHS=2sin((C+D)/2)cos((C-D)/2)

=2(sin(C/2)cos(D/2)+sin(D/2)cos(C/2))(cos(C/2)cos(D/2)+sin(C/2)sin(D/2))

=2(sin(C/2)cos(C/2)cos^2(D/2)+sin(D/2)cos(D/2)sin^2(C/2)+sin(D/2)cos(D/2)cos^2(C/2)+sin(C/2)cos(C/2)sin^2(D/2))

=2*1/2(sinCcos^2(D/2)+sinDsin^2(C/2)+sinDcos^2(C/2)+sinCsin^2(D/2))

=sinC(cos^2(D/2)+sin^2(D/2))+sinD(sin^2(C/2)+cos^2(C/2))

=sinC+sinD

=RHS

QED