Given relation
secalpha=secbetasecgamma+tanbetatangamma
=>secalpha-secbetasecgamma=tanbetatangamma
color(green)("Squaring both sides")
=>(secalpha-secbetasecgamma)^2=tan^2betatan^2gamma
=>sec^2alpha+sec^2betasec^2gamma-2secalphasecbetasecgamma=tan^2betatan^2gamma
=>-2secalphasecbetasecgamma=-sec^2alpha+tan^2betatan^2gamma-sec^2betasec^2gamma
=>-2secalphasecbetasecgamma=-sec^2alpha+(sec^2beta-1)(sec^2gamma-1) -sec^2betasec^2gamma
=>-2secalphasecbetasecgamma=-sec^2alpha+cancel(sec^2betasec^2gamma)+1-sec^2gamma-sec^2beta-cancel(sec^2betasec^2gamma)
=>sec^2beta-2secalphasecbetasecgamma=-sec^2alpha+1-sec^2gamma
color(blue)("Adding "(sec^2gammasec^2alpha)" both sides "
=>sec^2beta-2secalphasecbetasecgamma+sec^2gammasec^2alpha=sec^2gammasec^2alpha-sec^2alpha+1-sec^2gamma
=>(secbeta-secgammasecalpha)^2=sec^2alpha(sec^2gamma-1)-1(sec^2gamma-1)
=>(secbeta-secgammasecalpha)^2=(sec^2gamma-1)(sec^2alpha-1)
=>(secbeta-secgammasecalpha)^2=tan^2gammatan^2alpha
=>(secbeta-secgammasecalpha)=+-sqrt(tan^2gammatan^2alpha)
=>secbeta-secgammasecalpha=+-tangammatanalpha
=>color(BLUE)(secbeta=secgammasecalpha+-tangammatanalpha)
Shown