An object's two dimensional velocity is given by v(t) = ( tsin(pi/3t) , 2cos(pi/2t )- 3t ). What is the object's rate and direction of acceleration at t=1 ?

1 Answer
Dec 27, 2017

Using calculus, take the derivative of vec v(t) with respect to time t to get the acceleration function, then solve for acceleration at t = 1 to get vec a(1) = (pi/6 + sqrt(3)/2, - pi - 3) ~~ (2.25564958316718, -6.141592653589793)
Telling you that it accelerates around 2.25564958316718 m/s^2 in the x-direction and -6.141592653589793 m/s^2 in the y-direction.

Explanation:

The calculus definition for acceleration is the derivative of velocity with respect to time:

vec a = (d vec v)/(dt)

To take the derivative of the two-dimensional velocity, which is in this case the following function:

vec v(t) = (t sin(pi/3 t), 2 cos(pi/2 t) - 3t),

Take the derivative of each dimension, as such:

(d vec v)/(dt) = (d/dt (t sin(pi/3 t)), d/dt (2 cos(pi/2 t) - 3t)

Let's focus on the x-value first:

d/dt (t sin(pi/3 t))

We'll call that a function of x:

x(t) = t sin(pi/3 t)

So we're taking:

(dx)/(dt) = d/dt (t sin(pi/3 t))

First, let's use the product rule:

dx = t * d(sin(pi/3 t)) + sin(pi/3 t) dt

To get the differential d(sin(pi/3 t)), we need the chain rule...

Let's call this other function xi (a Greek letter, xi):

xi(t) = sin(pi/3 t)

And break it down into a composition of simpler functions:

xi_1(t) = pi/3 t

xi_2(t) = sin(t)

So xi(t) = xi_2(xi_1(t)).

To get (d xi)/(dt), we first need to take (d xi_1)/(dt):

(d xi_1)/(dt) = d/dt (pi/3 t) = pi/3

Then "multiply" by dt to obtain the differential d xi_1:

(d xi_1)/(dt) = pi/3 rarr d xi_1 = pi/3 dt

Next, take (d xi_2)/(d xi_1), which means replacing all input with xi_1:

(d xi_2)/(d xi_1) = d/(d xi_1) sin(xi_1) = cos(xi_1)

Obtaining the differential d xi_2:

d xi_2 = cos(xi_1) d xi_1

And replacing xi_1 and d xi_1 with what we had solved for earlier, which is in terms of t and dt:

d xi_2 = cos(pi/3 t) pi/3 dt

Therefore, "dividing" by dt:

(d xi_2)/(dt) = cos(pi/3 t) pi/3

(d xi_2)/(dt) = pi/3 cos(pi/3 t)

That is not only (d xi_2)/(dt), but (d xi)/(dt) as a whole:

(d xi)/(dt) = pi/3 cos(pi/3 t)

Solving for the differential:

d xi = pi/3 cos(pi/3 t) dt

Substituting back into dx:

dx = t * d xi + sin(pi/3 t) dt

dx = t * pi/3 cos(pi/3 t) dt + sin(pi/3 t) dt

dx = pi/3 t cos(pi/3 t) dt + sin(pi/3 t) dt

Finally, solving for the derivative:

(dx)/(dt) = pi/3 t cos(pi/3 t) + sin(pi/3 t)

Substituting back into our function:

(d vec v)/(dt) = ((dx)/(dt), d/dt (2 cos(pi/2 t) - 3t)

(d vec v)/(dt) = (pi/3 t cos(pi/3 t) + sin(pi/3 t), d/dt (2 cos(pi/2 t) - 3t)

Next, we'll look at the y-value, as a function y(t):

y(t) = 2 cos(pi/2 t) - 3t

So we're solving for the derivative:

(dy)/(dt) = d/dt (2 cos(pi/2 t) - 3t)

First, by the sum rule:

(dy)/(dt) = d/dt (2 cos(pi/2 t)) + d/dt (-3t)

Taking the constatns out by linearity:

(dy)/(dt) = 2 d/dt (cos(pi/2 t)) - 3 d/dt (t)

d/dt (t) is just 1:

(dy)/(dt) = 2 d/dt (cos(pi/2 t)) - 3

As for d/dt (cos(pi/2 t)), we could use the chain rule again, defining a function of ypsilon (a Greek letter upsilon):

upsilon(t) = cos(pi/2 t)

Again splitting it:

upsilon_1(t) = pi/2 t

upsilon_2(t) = cos(t)

upsilon(t) = upsilon_2(upsilon_1(t))

Then taking (d upsilon_1)/(dt):

(d upsilon_1)/(dt) = d/dt (pi/2 t) = pi/2

d upsilon_1 = pi/2 dt

Next, (d upsilon_2)/(d upsilon 1):

(d upsilon_2)/(d upsilon 1) = d/(d upsilon_1) cos(upsilon_1) = -sin(upsilon_1)

d upsilon_2 = -sin(upsilon_1) d upsilon_1

"Unrolling" things:

d upsilon_2 = -sin(pi/2 t) pi/2 dt

d upsilon_2 = - pi/2 sin(pi/2 t) dt

Taking the derivative:

(d upsilon_2)/(dt) = - pi/2 sin(pi/2 t)

(d upsilon)/(dt) = - pi/2 sin(pi/2 t)

Back to (dy)/(dt):

(dy)/(dt) = 2 (d upsilon)/(dt) - 3

(dy)/(dt) = 2 * - pi/2 sin(pi/2 t) - 3

(dy)/(dt) = - pi sin(pi/2 t) - 3

Substituting back into the derivative of the velocity function:

(d vec v)/(dt) = (pi/3 t cos(pi/3 t) + sin(pi/3 t), (dy)/(dt))

(d vec v)/(dt) = (pi/3 t cos(pi/3 t) + sin(pi/3 t), - pi sin(pi/2 t) - 3)

And that should get us the acceleration function:

vec a(t) = (pi/3 t cos(pi/3 t) + sin(pi/3 t), - pi sin(pi/2 t) - 3)

Now, we just need to substitute for t = 1:

vec a(1) = (pi/3 (1) cos(pi/3 (1)) + sin(pi/3 (1)), - pi sin(pi/2 (1)) - 3)

And solve:

vec a(1) = (pi/3 cos(pi/3) + sin(pi/3), - pi sin(pi/2) - 3)

vec a(1) = (pi/3 (1/2) + sqrt(3)/2, - pi (1) - 3)

vec a(1) = (pi/6 + sqrt(3)/2, - pi - 3)

This approximates to:

vec a(1) ~~ (2.25564958316718, -6.141592653589793)

We can see that it accelerates around 2.25564958316718 m/s^2 in the x-direction and -6.141592653589793 m/s^2 in the y-direction.