color(blue)("Method")
- Determine equation of line passing through BCD
- Determine mid point of BD->C
-
Determine equation of the line passing through CA
-
Using simultaneous equation comparing y=8/7x+2 to line
""through AC determine point A (Centre of circle).
-
Determine equation of circle
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 1 - Determine equation of line passing through BCD
")
Gradient" "->("change in y")/("change in x") =m=(9-1)/(3-2)=8
So y=mx+c" "->" "y=8x+c
I chose line to pass through P_1->B->(2,1)
=>1=8(2)+c" "-> c=1-16=-15
So color(blue)("BCD"->y=mx+c" "->" "y=8x+-15)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 2 - Determine mid point of BD"->"C
")
"C"-> "mean point "-> (x_1+x_2)/2" and " (y_1+y_2)/2
color(blue)("C"->(x,y)->(5/2 ,10/2) -> (5/2,5))
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 3 - Determine equation of the line passing through CA")
Now known: gradient =-1/m = -1/8
Now known: passes through the point C->(5/2,5)
Thus for this line y=-1/mx+c" " ->" " 5=-1/8(5/2)+c
c=5 5/16 = 85/16
color(blue)(y=-1/mx+c" "->" "y=-1/8x+85/16)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 4 - Using simultaneous equation comparing"color(blue)(y=8/7x+2" to line "y=-1/8x+85/16)
y=8/7x+2 ..........................(1)
y=-1/8x+86/16 ..................(2)
Equation (1) - Equation (2) to eliminate y
0=8/7x+1/8x+2-86/16
0=71/56x-84/16
color(blue)(x=84/16xx56/71 =4 41/142) ................(3)
Substitute (3) into (1)
y=8/7x+2" "->" "y=8/7(4 41/142)+2
color(blue)("y=6 64/71)
color(blue)("Centre of circle at "(x_c,y_c)" "->" "(4 41/142, 6 64/71)")
color(red)("Not very nice numbers!")
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 5 - Determine equation of circle")
If the circle is centred at the origin then the equation is
r^2=x^2+y^2
If the circle is offset then mathematically we transpose it back to the origin. So in this case, using step 4, we have:
color(brown)( r^2=(x-4 41/142)^2+(y-6 64/71)^2 larr " equation of the circle")
All we need to do now is determine the magnitude of r which is the distance AB
=> r^2 =(x_c-x_1)^2+(y_c-y_1)
=> r^2 =(4 41/142-2)^2+(6 64/71-1)^2
color(red)("Switching do decimal as the numbers are getting silly!")
r~~6.329 ->6.33 to 2 decimal places.
bar(color(blue)("| The equation of the circle is:"color(white)(......................)|)
underline(color(blue)(|=> 40.06~~(x-4 41/142)^2+(y-6 64/71)^2color(white)(.) |)