A circle has a center that falls on the line y = 8/7x +2 and passes through ( 2 ,1 ) and (3 ,9 ). What is the equation of the circle?

1 Answer
May 22, 2016

bar(color(blue)("| The equation of the circle is:"color(white)(......................)|)
underline(color(blue)(|=> 40.06~~(x-4 41/142)^2+(y-6 64/71)^2color(white)(.) |)

Explanation:

Tony B

color(blue)("Method")

  1. Determine equation of line passing through BCD
  2. Determine mid point of BD->C
  3. Determine equation of the line passing through CA

  4. Using simultaneous equation comparing y=8/7x+2 to line
    ""through AC determine point A (Centre of circle).

  5. Determine equation of circle
    '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    color(blue)("Step 1 - Determine equation of line passing through BCD ")

Gradient" "->("change in y")/("change in x") =m=(9-1)/(3-2)=8

So y=mx+c" "->" "y=8x+c

I chose line to pass through P_1->B->(2,1)

=>1=8(2)+c" "-> c=1-16=-15

So color(blue)("BCD"->y=mx+c" "->" "y=8x+-15)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)("Step 2 - Determine mid point of BD"->"C ")

"C"-> "mean point "-> (x_1+x_2)/2" and " (y_1+y_2)/2

color(blue)("C"->(x,y)->(5/2 ,10/2) -> (5/2,5))
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 3 - Determine equation of the line passing through CA")

Now known: gradient =-1/m = -1/8
Now known: passes through the point C->(5/2,5)

Thus for this line y=-1/mx+c" " ->" " 5=-1/8(5/2)+c

c=5 5/16 = 85/16

color(blue)(y=-1/mx+c" "->" "y=-1/8x+85/16)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)("Step 4 - Using simultaneous equation comparing"color(blue)(y=8/7x+2" to line "y=-1/8x+85/16)

y=8/7x+2 ..........................(1)
y=-1/8x+86/16 ..................(2)

Equation (1) - Equation (2) to eliminate y

0=8/7x+1/8x+2-86/16

0=71/56x-84/16

color(blue)(x=84/16xx56/71 =4 41/142) ................(3)

Substitute (3) into (1)

y=8/7x+2" "->" "y=8/7(4 41/142)+2

color(blue)("y=6 64/71)

color(blue)("Centre of circle at "(x_c,y_c)" "->" "(4 41/142, 6 64/71)")
color(red)("Not very nice numbers!")
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 5 - Determine equation of circle")

If the circle is centred at the origin then the equation is

r^2=x^2+y^2

If the circle is offset then mathematically we transpose it back to the origin. So in this case, using step 4, we have:

color(brown)( r^2=(x-4 41/142)^2+(y-6 64/71)^2 larr " equation of the circle")

All we need to do now is determine the magnitude of r which is the distance AB

=> r^2 =(x_c-x_1)^2+(y_c-y_1)

=> r^2 =(4 41/142-2)^2+(6 64/71-1)^2

color(red)("Switching do decimal as the numbers are getting silly!")

r~~6.329 ->6.33 to 2 decimal places.

bar(color(blue)("| The equation of the circle is:"color(white)(......................)|)
underline(color(blue)(|=> 40.06~~(x-4 41/142)^2+(y-6 64/71)^2color(white)(.) |)