A circle has a center that falls on the line y = 5/4x +4 y=54x+4 and passes through ( 4 ,7 )(4,7) and (2 ,5 )(2,5). What is the equation of the circle?

1 Answer
Jun 28, 2018

(x-20/9)^2 + (y - 61/9)^2 = 260/81(x209)2+(y619)2=26081

Explanation:

Let's write the center line 4y=5x+164y=5x+16 and let x=4cx=4c so the center is (4c, 5c + 4)(4c,5c+4) eliminating the messy fractions. Let's call the squared radius kk. The equation for the circle is thus

(x - 4c)^2 + (y - (5c + 4))^2 = k(x4c)2+(y(5c+4))2=k

Our job is to find cc and kk; our two points give us two equations:

(4 -4c)^2 + (7 - (5 c + 4))^2 = k(44c)2+(7(5c+4))2=k

(2 - 4c)^2 + (5 - (5 c + 4))^2 = k(24c)2+(5(5c+4))2=k

We expand and subtract, which should give us an equation for c.c.

16 - 32 c + 16c^2 + 9 - 30c + 25c^2 = k1632c+16c2+930c+25c2=k

4 - 16 c + 16c^2 + 1 -10 c + 25c^2 = k416c+16c2+110c+25c2=k

20 -36 c = 02036c=0

c = 20/36= 5/9c=2036=59

(x - 4(5/9))^2 + (y - (5(5/9) + 4))^2 = k(x4(59))2+(y(5(59)+4))2=k

(x-20/9)^2 + (y - 61/9)^2 = k(x209)2+(y619)2=k

k =(2-20/9)^2 + (5 - 61/9)^2 = 260/81k=(2209)2+(5619)2=26081

Our equation is

(x-20/9)^2 + (y - 61/9)^2 = 260/81(x209)2+(y619)2=26081

I'll plot after I post. Plot:

0 = ( (x-20/9)^2 + (y - 61/9)^2 -260/81)( 5/4 x+4 -y)((x-4)^2+(y-7)^2-.1^2)( (x-2)^2+(y-5)^2-.1^2) ((x-20/9)^2 + (y - 61/9)^2 - .1^2)

graph{0 = ( (x-20/9)^2 + (y - 61/9)^2 -260/81)( 5/4 x+4 -y)((x-4)^2+(y-7)^2-.1^2)( (x-2)^2+(y-5)^2-.1^2) ((x-20/9)^2 + (y - 61/9)^2 - .1^2) [-2.885, 8.365, 3.577, 9.2]}