As the circle passes through points (5,7)(5,7) and (3,2)(3,2), its center is equidistant from these two points and hence lies on perpendicular bisector of points (5,7)(5,7) and (3,2)(3,2), whose equation is given by
(x-5)^2+(y-7)^2=(x-3)^2+(y-2)^2(x−5)2+(y−7)2=(x−3)2+(y−2)2
or x^2-10x+25+y^2-14y+49=x^2-6x+9+y^2-4y+4x2−10x+25+y2−14y+49=x2−6x+9+y2−4y+4
or -10x+25-14y+49+6x-9+4y-4=0−10x+25−14y+49+6x−9+4y−4=0
or -4x-10y+61=0−4x−10y+61=0 or 4x+10y=614x+10y=61......................(A)
As center also lies on y=2/3x+7y=23x+7, putting this in (A)
4x+10(2/3x+7)=614x+10(23x+7)=61 or 12x+20x+210=18312x+20x+210=183
or 32x=183-210=-2732x=183−210=−27 and x=-27/32x=−2732 and
y=2/3xx(-27/32)+7=-9/16+7=103/16y=23×(−2732)+7=−916+7=10316
Hence, center is (-27/32,103/16)(−2732,10316) and radius squared is (-27/32-3)^2+(103/16-2)^2(−2732−3)2+(10316−2)2
And equation of circle is
(x+27/32)^2+(y-103/16)^2=(-27/32-3)^2+(103/16-2)^2(x+2732)2+(y−10316)2=(−2732−3)2+(10316−2)2
or x^2+27/16x+(27/32)^2+y^2-103/8y+(103/16)^2=(123/32)^2+(71/16)^2x2+2716x+(2732)2+y2−1038y+(10316)2=(12332)2+(7116)2
Multiplying by 32^2=1024322=1024, we get
1024x^2+27xx64x+729+1024y^2-103xx128y+206^2=123^2+142^21024x2+27×64x+729+1024y2−103×128y+2062=1232+1422
or 1024x^2+1728x+729+1024y^2-13184y+42436=15129+201641024x2+1728x+729+1024y2−13184y+42436=15129+20164
or 1024x^2+1024y^2+1728x-13184y+7872=01024x2+1024y2+1728x−13184y+7872=0 and dividing by 88
128x^2+128y^2+216x-1648y+984=0128x2+128y2+216x−1648y+984=0 and dividing again by 88
16x^2+16y^2+27x-206y+123=016x2+16y2+27x−206y+123=0