A circle has a center that falls on the line y = 2/3x +7 y=23x+7 and passes through (5 ,7 )(5,7) and (3 ,2 )(3,2). What is the equation of the circle?

1 Answer
Oct 19, 2016

Equation of circle is 16x^2+16y^2+27x-206y+123=016x2+16y2+27x206y+123=0

Explanation:

As the circle passes through points (5,7)(5,7) and (3,2)(3,2), its center is equidistant from these two points and hence lies on perpendicular bisector of points (5,7)(5,7) and (3,2)(3,2), whose equation is given by

(x-5)^2+(y-7)^2=(x-3)^2+(y-2)^2(x5)2+(y7)2=(x3)2+(y2)2

or x^2-10x+25+y^2-14y+49=x^2-6x+9+y^2-4y+4x210x+25+y214y+49=x26x+9+y24y+4

or -10x+25-14y+49+6x-9+4y-4=010x+2514y+49+6x9+4y4=0

or -4x-10y+61=04x10y+61=0 or 4x+10y=614x+10y=61......................(A)

As center also lies on y=2/3x+7y=23x+7, putting this in (A)

4x+10(2/3x+7)=614x+10(23x+7)=61 or 12x+20x+210=18312x+20x+210=183

or 32x=183-210=-2732x=183210=27 and x=-27/32x=2732 and

y=2/3xx(-27/32)+7=-9/16+7=103/16y=23×(2732)+7=916+7=10316

Hence, center is (-27/32,103/16)(2732,10316) and radius squared is (-27/32-3)^2+(103/16-2)^2(27323)2+(103162)2

And equation of circle is

(x+27/32)^2+(y-103/16)^2=(-27/32-3)^2+(103/16-2)^2(x+2732)2+(y10316)2=(27323)2+(103162)2

or x^2+27/16x+(27/32)^2+y^2-103/8y+(103/16)^2=(123/32)^2+(71/16)^2x2+2716x+(2732)2+y21038y+(10316)2=(12332)2+(7116)2

Multiplying by 32^2=1024322=1024, we get

1024x^2+27xx64x+729+1024y^2-103xx128y+206^2=123^2+142^21024x2+27×64x+729+1024y2103×128y+2062=1232+1422

or 1024x^2+1728x+729+1024y^2-13184y+42436=15129+201641024x2+1728x+729+1024y213184y+42436=15129+20164

or 1024x^2+1024y^2+1728x-13184y+7872=01024x2+1024y2+1728x13184y+7872=0 and dividing by 88

128x^2+128y^2+216x-1648y+984=0128x2+128y2+216x1648y+984=0 and dividing again by 88

16x^2+16y^2+27x-206y+123=016x2+16y2+27x206y+123=0