Prove that (sin4t)/4 -= cos^3tsint-sin^3tcost ?

1 Answer
Feb 14, 2018

We seek to show that:

(sin4t)/4 -= cos^3tsint-sin^3tcost

Consider the LHS:

LHS = (sin4t)/4

Using the sine and cosine double angle formulas:

sin2A -= 2sinAcosA
cos2A -= cos^2A-sin^2A

we have:

LHS = (sin(2(2t)))/4

\ \ \ \ \ \ \ \ = (2sin2tcos2t)/4

\ \ \ \ \ \ \ \ = (2(2sintcost)(cos^2t-sin^2t))/4

\ \ \ \ \ \ \ \ = sintcost(cos^2t-sin^2t)

\ \ \ \ \ \ \ \ = sintcostcos^2t-sintcostsin^2t

\ \ \ \ \ \ \ \ = sintcos^3t-costsin^3t

\ \ \ \ \ \ \ \ = RHS \ \ \ \ QED