Prove that (1-tan^2 theta) / (1+tan^2 theta) -= cos(2 theta) ?

3 Answers
Feb 8, 2018

We seek to prove that:

(1-tan^2 theta) / (1+tan^2 theta) -= cos(2 theta)

We will require the following trigonometric definitions/identities:

tan phi = sin phi / cos phi
sin^2 phi + cos^phi -=1
cos 2phi -= cos^2 phi - sin^2 phi

Consider the LHS of the given expression:

LHS = (1-tan^2 theta) / (1+tan^2 theta)

\ \ \ \ \ \ \ \ = (1-(sin^2 theta)/(cos^2 theta)) / (1+(sin^2 theta)/(cos^2 theta))

\ \ \ \ \ \ \ \ = ((cos^2 theta -sin^2 theta)/(cos^2 theta)) / ( (cos^2 theta+sin^2 theta)/(cos^2 theta))

\ \ \ \ \ \ \ \ = (cos^2 theta -sin^2 theta)/(cos^2 theta+sin^2 theta)

\ \ \ \ \ \ \ \ = (cos 2theta)/(1)

\ \ \ \ \ \ \ \ = cos 2theta

\ \ \ \ \ \ \ \ = RHS \ \ \ \ QED

Feb 8, 2018

Here are the identities that I used:

tan^2theta+1=sec^2theta

tan^2theta=sin^2theta/cos^2theta

sin^2theta+cos^2theta=1

cos(2theta)=cos^2theta-sin^2theta

Now here's the actual proof:

(1-tan^2 theta) / (1+tan^2 theta)=cos(2 theta)

(-sin^2theta/cos^2theta+1)/(sin^2theta/cos^2theta+1)=cos(2theta)

((-sin^2theta+cos^2theta)/cos^2theta)/((sin^2theta+cos^2theta)/cos^2theta)=cos(2theta)

(-sin^2theta+cos^2theta)/cancel(sin^2theta+cos^2theta)=cos(2theta)

-sin^2theta+cos^2theta=cos(2theta)

cos^2theta-sin^2theta=cos(2theta)

cos(2theta)=cos(2theta)

Feb 9, 2018

As proved below

Explanation:

1 + tan^2 theta = sec^2 theta = 1/cos^2 theta

1 - 2sin^2 theta = 2cos^2 theta - 1 = cos^2 theta - sin^2 theta = cos (2theta)

(1-tan^2theta) / (1+tan^2theta) = (1-(sin^2theta/cos^2theta))/(1/cos^2(theta) as 1 + tan^2theta = sec^2 theta = 1/cos^2theta

((cos^2theta-sin^2theta)/cancel(cos^2(theta))/ 1/cancel(cos^2 (theta))) = cos^2(theta) - sin^2theta = cos(2theta)