Prove that (1-tan^2 theta) / (1+tan^2 theta) -= cos(2 theta) ?
3 Answers
We seek to prove that:
(1-tan^2 theta) / (1+tan^2 theta) -= cos(2 theta)
We will require the following trigonometric definitions/identities:
tan phi = sin phi / cos phi
sin^2 phi + cos^phi -=1
cos 2phi -= cos^2 phi - sin^2 phi
Consider the LHS of the given expression:
LHS = (1-tan^2 theta) / (1+tan^2 theta)
\ \ \ \ \ \ \ \ = (1-(sin^2 theta)/(cos^2 theta)) / (1+(sin^2 theta)/(cos^2 theta))
\ \ \ \ \ \ \ \ = ((cos^2 theta -sin^2 theta)/(cos^2 theta)) / ( (cos^2 theta+sin^2 theta)/(cos^2 theta))
\ \ \ \ \ \ \ \ = (cos^2 theta -sin^2 theta)/(cos^2 theta+sin^2 theta)
\ \ \ \ \ \ \ \ = (cos 2theta)/(1)
\ \ \ \ \ \ \ \ = cos 2theta
\ \ \ \ \ \ \ \ = RHS \ \ \ \ QED
Here are the identities that I used:
Now here's the actual proof:
As proved below