How do I prove that cscx-sinx=cosxcotx?

3 Answers
May 19, 2017

cscx-sinx

=1/sinx-sinx

=(1-sin^2x)/sinx

=cos^2x/sinx

=cosx/sinx xxcosx

=cotxcosx

thereforecscx-sinx=cotxcosx sf(QED)

May 19, 2017

See proof below

Explanation:

We need

cscx=1/sinx

sin^2x+cos^2x=1

cotx=cosx/sinx

Therefore,

LHS=cscx-sinx

=1/sinx-sinx

=(1-sin^2x)/sinx

=cos^2x/sinx

=cosx*cosx/sinx

=cosxcotx

=RHS

QED

May 19, 2017

We have: csc(x) - sin(x)

Let's apply a standard trigonometric identity; csc(x) = frac(1)(sin(x)):

= frac(1)(sin(x)) - sin(x)

= frac(1)(sin(x)) - frac(sin^(2)(x))(sin(x))

= frac(1 - sin^(2)(x))(sin(x))

One of the Pythagorean identities is cos^(2)(x) + sin^(2)(x) = 1

We can rearrange it to get:

Rightarrow cos^(2)(x) = 1 - sin^(2)(x)

Let's apply this rearranged identity to our proof:

= frac(cos^(2)(x))(sin(x))

= cos(x) times frac(cos(x))(sin(x))

Finally, let's apply another standard trigonometric identity; cot(x) = frac(cos(x))(sin(x)):

= cos(x) times cot(x)

= cos(x) cot(x) Q.E.D.