How do I evaluate cos48cos12?

1 Answer
May 16, 2017

See below.

Explanation:

cos48cos12 is similar to the sum-to-product formula for

cos"P"+cos"Q"=2cos(("P"+"Q")/2)cos(("P"-"Q")/2)

"P"+"Q"=96

"P"-"Q"=24

2"P"=120

"P"=60

2"Q"=72

"Q"=36

cos48cos12=1/2(cos60+cos36)

=1/2(1/2+cos36)

cos36=cos2(18)=2cos^2 18-1

How to find sin18

From the above video, we know sin18=(-1+sqrt5)/4

cos^2 18=1-sin^2 18=1-((-1+sqrt5)/4) ^2=(5+sqrt5)/8

cos36=2cos^2 18-1=2((5+sqrt5)/8)^2-1=(1+sqrt5)/4

1/2(1/2+cos36)

=1/2(1/2+(1+sqrt5)/4)

=1/2((3+sqrt5)/4)

=(3+sqrt5)/8

thereforecos48cos12=(3+sqrt5)/8 sf(QED"/"OEDelta)