cos48cos12 is similar to the sum-to-product formula for
cos"P"+cos"Q"=2cos(("P"+"Q")/2)cos(("P"-"Q")/2)
"P"+"Q"=96
"P"-"Q"=24
2"P"=120
"P"=60
2"Q"=72
"Q"=36
cos48cos12=1/2(cos60+cos36)
=1/2(1/2+cos36)
cos36=cos2(18)=2cos^2 18-1
How to find sin18
From the above video, we know sin18=(-1+sqrt5)/4
cos^2 18=1-sin^2 18=1-((-1+sqrt5)/4) ^2=(5+sqrt5)/8
cos36=2cos^2 18-1=2((5+sqrt5)/8)^2-1=(1+sqrt5)/4
1/2(1/2+cos36)
=1/2(1/2+(1+sqrt5)/4)
=1/2((3+sqrt5)/4)
=(3+sqrt5)/8
thereforecos48cos12=(3+sqrt5)/8 sf(QED"/"OEDelta)