sin^2A+cos^2A=1sin2A+cos2A=1 is an identity and is true for all AA, including A=3xA=3x and hence
sin^2 3x+cos^2 3x=1sin23x+cos23x=1
However, let us try is using values of sin3xsin3x and cos3xcos3x.
But before this as sin^2x+cos^2x=1sin2x+cos2x=1, squaring it
sin^4x+cos^4x+2sin^2xcos^2x=1sin4x+cos4x+2sin2xcos2x=1 or sin^4x+cos^4x=1-2sin^2xcos^2xsin4x+cos4x=1−2sin2xcos2x
and sin^6x+cos^6x=1-3sin^2xcos^2x(sin^2x+cos^2x)sin6x+cos6x=1−3sin2xcos2x(sin2x+cos2x)
= 1-3sin^2xcos^2x1−3sin2xcos2x - as a^3+b^3=(a+b)^3-3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
color(white)_________color(white)"
Now coming to proof as
sin3x=3sinx-4sin^3xsin3x=3sinx−4sin3x and cosx=4cos^3x-3sinxcosx=4cos3x−3sinx
Therefore sin^2 3x+cos^2 3x=(3sinx-4sin^3x)^2+(4cos^3x-3cosx)^2sin23x+cos23x=(3sinx−4sin3x)2+(4cos3x−3cosx)2
= 9sin^2x+16sin^6x-24sin^4x+16cos^6x+9cos^2x-24cos^4x9sin2x+16sin6x−24sin4x+16cos6x+9cos2x−24cos4x
= 9(sin^2x+cos^2x)+16(sin^6x+cos^6x)-24(sin^4x+cos^4x)9(sin2x+cos2x)+16(sin6x+cos6x)−24(sin4x+cos4x)
= 9xx1+16(1-3sin^2xcos^2x)-24(1-2sin^2xcos^2x)9×1+16(1−3sin2xcos2x)−24(1−2sin2xcos2x)
= 9+16-48sin^2xcos^2x-24+48sin^2xcos^2x9+16−48sin2xcos2x−24+48sin2xcos2x
= 11