What is sin^2 3x+cos^2 3xsin23x+cos23x?

2 Answers
Apr 11, 2017

Please see below.

Explanation:

sin^2A+cos^2A=1sin2A+cos2A=1 is an identity and is true for all AA, including A=3xA=3x and hence

sin^2 3x+cos^2 3x=1sin23x+cos23x=1

However, let us try is using values of sin3xsin3x and cos3xcos3x.

But before this as sin^2x+cos^2x=1sin2x+cos2x=1, squaring it

sin^4x+cos^4x+2sin^2xcos^2x=1sin4x+cos4x+2sin2xcos2x=1 or sin^4x+cos^4x=1-2sin^2xcos^2xsin4x+cos4x=12sin2xcos2x

and sin^6x+cos^6x=1-3sin^2xcos^2x(sin^2x+cos^2x)sin6x+cos6x=13sin2xcos2x(sin2x+cos2x)

= 1-3sin^2xcos^2x13sin2xcos2x - as a^3+b^3=(a+b)^3-3ab(a+b)a3+b3=(a+b)33ab(a+b)

color(white)_________color(white)"

Now coming to proof as

sin3x=3sinx-4sin^3xsin3x=3sinx4sin3x and cosx=4cos^3x-3sinxcosx=4cos3x3sinx

Therefore sin^2 3x+cos^2 3x=(3sinx-4sin^3x)^2+(4cos^3x-3cosx)^2sin23x+cos23x=(3sinx4sin3x)2+(4cos3x3cosx)2

= 9sin^2x+16sin^6x-24sin^4x+16cos^6x+9cos^2x-24cos^4x9sin2x+16sin6x24sin4x+16cos6x+9cos2x24cos4x

= 9(sin^2x+cos^2x)+16(sin^6x+cos^6x)-24(sin^4x+cos^4x)9(sin2x+cos2x)+16(sin6x+cos6x)24(sin4x+cos4x)

= 9xx1+16(1-3sin^2xcos^2x)-24(1-2sin^2xcos^2x)9×1+16(13sin2xcos2x)24(12sin2xcos2x)

= 9+16-48sin^2xcos^2x-24+48sin^2xcos^2x9+1648sin2xcos2x24+48sin2xcos2x

= 11

Apr 11, 2017

Start from trig identity:
sin^2 x + cos^2 x = 1sin2x+cos2x=1
In this identity, x is a variable, so we can substitute x by another variable X = 3x. Therefore:
sin^2 X + cos^2 X = sin^2 (3x) + cos^2 (3x) = 1sin2X+cos2X=sin2(3x)+cos2(3x)=1