Question #c20a4

2 Answers
Apr 4, 2017

I tried this:

Explanation:

Have a look:
enter image source here

Apr 4, 2017

(tanx+cotx)/(tanx-cotx)=sec^2x/(tan^2x-1)

Multiply the left-hand side by the conjugate of the denominator:

(tanx+cotx)/(tanx-cotx)=(tanx+cotx)/(tanx-cotx)*(tanx+cotx)/(tanx+cotx)

=(tan^2x+2tanxcotx+cot^2x)/(tan^2x-cot^2x)

Rewriting cotx:

=(tan^2x+2tanx(1/tanx)+1/tan^2x)/(tan^2x-1/tan^2x)

Multiplying through by tan^2x:

=(tan^4x+2tan^2x+1)/(tan^4x-1)

Factoring:

=(tan^2x+1)^2/((tan^2x+1)(tan^2x-1))=(tan^2x+1)/(tan^2x-1)

The numerator is a form of the Pythagorean identity:

=sec^2x/(tan^2x-1)

This is the right-hand side of the original equation, so the identity has been verified.