Question #3d5bd

1 Answer
Apr 4, 2017

tanx+cosx/(1+sinx)=1/cosx

Manipulate just the left-hand side.

tanx+cosx/(1+sinx)=sinx/cosx+cosx/(1+sinx)

Common denominator:

=(sinx(1+sinx))/(cosx(1+sinx))+(cosx(cosx))/(cosx(1+sinx))

=(sinx+sin^2x+cos^2x)/((cosx)(1+sinx))

Recall that sin^2x+cos^2x=1:

=(sinx+1)/(cosx(1+sinx))

=1/cosx

Thus the identity is proven.