How do we prove that (1 - tan theta)/(1 + tan theta) = (cot theta - 1)/(cot theta + 1)?

1 Answer
Apr 5, 2017

Use tantheta = sintheta/costheta and cottheta = costheta/sintheta.

(1 - sintheta/costheta)/(1 +sintheta/costheta) = (costheta/sintheta - 1)/(costheta/sintheta + 1)

((costheta - sin theta)/costheta)/((costheta+ sin theta)/costheta) = ((costheta - sin theta)/sintheta)/((costheta + sin theta)/sintheta)

(costheta - sin theta)/(costheta + sin theta) = (costheta - sin theta)/(costheta + sin theta)

This is true for all values of theta, so we have proved this identity.

Hopefully this helps!