Prove that (tanx+tany)/(tanx-tany)=2cscx?

1 Answer
Mar 26, 2017

(tanx+tany)/(tanx-tany)=-cos(x-y)/cos(x+y)

not 2cscx

Explanation:

(tanx+tany)/(tanx-tany)

= (sinx/cosx+cosy/siny)/(sinx/cosx-cosy/siny)

= ((sinxsiny+cosxcosy)/(cosxsiny))/((sinxsiny-cosxcosy)/(cosxsiny))

= (cosxcosy+sinxsiny)/-(cosxcosy-sinxsiny)

= -cos(x-y)/cos(x+y)

Hence (tanx+tany)/(tanx-tany)=-cos(x-y)/cos(x+y)

not 2cscx