let we take LHS to prove RHS.
tan 2theta = sin(2theta) / cos (2theta)
sin(2theta) = 2sin theta cos theta, and cos (2theta)= cos^2 theta - sin^2 theta
therefore,
tan 2theta= (2sin theta cos theta)/ (cos^2 theta - sin^2 theta)
divide by cos^2 theta
= (2sin theta cos theta)/cos^2 theta/ ((cos^2 theta - sin^2 theta))/cos^2 theta
= (2sin theta cos theta)/cos ^2theta/ (cos^2 theta/cos^2 theta - sin^2 theta/cos^2 theta)
= (2sin theta )/cos theta/ (1 - sin^2 theta/cos^2 theta)
= (2 tan theta)/ (1 - tan^2 theta)