Question #f1b58

2 Answers
Mar 16, 2017

see explanation.

Explanation:

Using the color(blue)"product to sum identity"

color(red)(bar(ul(|color(white)(2/2)color(black)(cosx cosy=1/2[cos(x+y)+cos(x-y)])color(white)(2/2)|)))

"here "x=(alpha+beta),y=(alpha-beta)

rArrx+y=alpha+beta+alpha-beta=2alpha

rArrx-y=alpha+beta-alpha+beta=2beta

rArrcos(alpha+beta)cos(alpha-beta)=1/2[cos2alpha+cos2beta]

Using the color(blue)"Double angle identities"

color(red)(bar(ul(|color(white)(2/2)color(black)(cos2x=1-2sin^2x=2cos^2x-1)color(white)(2/2)|)))

rArr1/2[cos2alpha+2cosbeta]

=1/2[1-2sin^2alpha+2cos^2beta-1]

=cos^2beta-sin^2alpha

"Since left side "=" right side"rArr"verified"

Mar 17, 2017

see below

Explanation:

One way is as follows: start with the compound angle expansions

cos(alpha+beta)cos(alpha-beta)

=(cosalphacosbeta-sinalphasinbeta)(cosalphacosbeta+sinalphasinbeta)

this is the difference of squares , hence:

=cos^2alphacos^2beta-sin^2alphasin^2beta

now sin^2x+cos^2x=1

so cos^2alpha=1-sin^2alpha

& sin^2beta=1-cos^2beta

we have

=(1-sin^2alpha)cos^2beta-sin^2alpha(1-cos^2beta)

multiply out and simplify

=cos^2beta-sin^2alphacos^2beta-sin^2alpha+sin^2alphacos^2beta

=cos^2betacancel(-sin^2alphacos^2beta)-sin^2alphacancel(+sin^2alphacos^2beta)

=cos^2beta-sin^2alpha" as required"