Question #ca93b Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer P dilip_k Mar 16, 2017 Using formula #2sin^2theta=1-cos2theta# we get #sintheta=sqrt(1/2(1-cos(2xxtheta))# Putting #theta=75# #sin75=sqrt(1/2(1-cos(2xx75))# #=sqrt(1/2(1-cos(180-30))# #=sqrt(1/2(1+cos30)# #=sqrt(1/2(1+sqrt3/2)# #=sqrt(1/8(4+2sqrt3)# #=sqrt(1/(2*2^2)((sqrt3)^2+2*sqrt3*1+1^2)# #=1/(2sqrt2)sqrt((sqrt3+1)^2)# #=1/(2sqrt2)(sqrt3+1)# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 963 views around the world You can reuse this answer Creative Commons License