I have edited the Problem so as to get the desired result.
However, I request the Questioners to be very careful while posing the Problem and avoid typographical errors.
cosx=sqrt{(m^2-1)/3} :. {(1-tan^2(x/2))/(1+tan^2(x/2))}=sqrt{(m^2-1)/3}.
But tan^3(x/2)=tana=sina/cosa rArr tan(x/2)=sin^(1/3)a/cos^(1/3)a.
Therefore, {(1-sin^(2/3)a/cos^(2/3)a)/(1+sin^(2/3)a/cos^(2/3)a)}=sqrt{(m^2-1)/3}.
:. (cos^(2/3)a+sin^(2/3)a)/(cos^(2/3)a-sin^(2/3)a)=sqrt3/sqrt(m^2-1).
By Componendo-Dividendo, cos^(2/3)a/sin^(2/3)a=(sqrt3+sqrt(m^2-1))/(sqrt3-sqrt(m^2-1)), or,
cos^(2/3)a/(sqrt3+sqrt(m^2-1))=sin^(2/3)a/(sqrt3-sqrt(m^2-1))=k, say.
:. cos^(2/3)a=k(sqrt3+sqrt(m^2-1)), sin^(2/3)a=k(sqrt3-sqrt(m^2-1)).
rArr 1=cos^2a+sin^2a=(cos^(2/3)a)^3+(sin^(2/3)a)^3
=k^3{(sqrt3+sqrt(m^2-1))^3+(sqrt3-sqrt(m^2-1))^3}
Here, knowing that, (l+n)^3+(l-n)^3=2l(l^2+3n^2), we find, that,
1=k^3[(2sqrt3){(sqrt3)^2+3(sqrt(m^2-1))^2}]=k^3(6sqrt3m^2),
giving, k^3=1/(6sqrt3m^2)...................(star).
Finally, then, cos^(2/3)a+sin^(2/3)a
=k{(sqrt3+sqrt(m^2-1))+(sqrt3-sqrt(m^2-1))}=(2sqrt3)k.
rArr {cos^(2/3)a+sin^(2/3)a}^3=(2sqrt3)^3k^3=(8*3sqrt3)/(6sqrt3m^2).......[because, (star)]
, i.e, {cos^(2/3)a+sin^(2/3)a}^3=4/m^2=(2/m)^2.
Accordingly, cos^(2/3)a+sin^(2/3)a=(2/m)^(2/3).
Enjoy Maths.!