Question #1e28e

1 Answer
Mar 15, 2017

see below

Explanation:

tan3theta=tan(2theta+theta)

#using the compound angle identity

tan(x+y)=(tanx+tany)/(1-tanxtany)

tan3theta=(tan2theta+tantheta)/(1-tan2thetatantheta)

using the same identity on " "tan2theta

tan3theta=((tantheta+tantheta)/(1-tanthetatantheta)+tantheta)/(1-(tantheta+tantheta)/(1-tanthetatantheta)tantheta)

now to tidy up

tan3theta=((2tantheta)/(1-tan^2theta)+tantheta)/(1-(2tantheta)/(1-tan^2theta)tantheta)

tan3theta=((2tantheta+tantheta-tan^3theta)/cancel((1-tan^2theta)))/((1-tan^2theta-2tan^2theta)/cancel((1-tan^2theta)))

tan3theta=((2tantheta+tantheta-tan^3theta))/((1-tan^2theta- 2tan^2theta)

giving

tan3theta=(3tantheta-tan^3theta)/(1-3tan^2theta)