Question #aa2dc

2 Answers
Mar 15, 2017

See proof below

Explanation:

We use

sin(a-b)=sinacosb-sinbcosa

cos(a-b)=cosacosb-sinasinb

So,

tan(a-b)=sin(a-b)/cos(a-b)

=(sinacosb-sinbcosa)/(cosacosb-sinasinb)

Dividing by cosacosb

tan(a-b)=((sinacosb)/(cosacosb)-(sinbcosa)/(cosacosb))/((cosacosb)/(cosacosb)-(sinasinb)/(cosacosb))

=(tana-tanb)/(1-tanatanb)

Let a=x+y

and b=y

tan(a-b)=tan(x+y-y)=tanx=RHS

(tan(x+y)-tany)/(1-tan(x+y)tany)=LHS

So,

(tan(x+y)-tany)/(1-tan(x+y)tany)=tanx

QED

Mar 15, 2017

Yes, It does equal to tanx

Explanation:

let's assume that (x+y) = a and y = b

When we substitute it in the equation,
We get,

(tana-tanb)/(1+tanatanb) ....... (1)

And we know that,

tan(A-B) = (tanA-tanB)/(1+tanAtanB)

So, we can conclude that,

(tana-tanb)/(1+tanatanb) = tan(a-b)

As we know that,

(x+y) = a and y = b

So by substituting values we get,
tan(a-b) => tan(x+y-y) => tanx

Hence Proved.