Question #62f68 Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer salamat Mar 15, 2017 see explanation below Explanation: Let we take RHS to prove LHS #(1 -sin 2 x)/ cos (2 x) = (sin^2 x + cos ^2 x - 2sin x cos x)/(cos^2 x -sin^2 x)# # = (sin x - cos x)^2/((cos x - sin x)(cos x + sin x))# # = (sin x - cos x)^2/(-(-cos x + sin x)(cos x + sin x))# # =- (sin x - cos x)^cancel 2/(cancel(( sin x - cos x))(cos x + sin x))# # =- (sin x - cos x)/(cos x + sin x) = (cos x - sin x)/(cos x + sin x)# divided by #sin x# #(cos x/sin x - sin x/sin x)/(cos x/sin x + sin x/sin x) = (cost x - 1)/(cot x + 1)# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 1106 views around the world You can reuse this answer Creative Commons License