Question #de713

1 Answer
Mar 14, 2017

LHS=tan3xLHS=tan3x

=tan(x+2x)=tan(x+2x)

=(tanx+tan2x)/(1-tanxtan2x)=tanx+tan2x1tanxtan2x

=(tanx+(2tanx)/(1-tan^2x))/(1-(tanx*2tanx)/(1-tan^2x)=tanx+2tanx1tan2x1tanx2tanx1tan2x

=((tanx(1-tan^2x)+2tanx)/(1-tan^2x))/((1-tan^2x-2tan^2x)/(1-tan^2x))=tanx(1tan2x)+2tanx1tan2x1tan2x2tan2x1tan2x

= (3tanx-tan^3(x))/(1-3tan^2(x))=RHS=3tanxtan3(x)13tan2(x)=RHS

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

LHS=sin4xLHS=sin4x

=2sin2xcos2x=2sin2xcos2x

=4sinxcosx(1-2sin^2x)=4sinxcosx(12sin2x)

=cosx*4sinx(1-2sin^2x)=cosx4sinx(12sin2x)

=(cosx)(4sinx-8sin^3x)=RHS=(cosx)(4sinx8sin3x)=RHS