LHS=tan3xLHS=tan3x
=tan(x+2x)=tan(x+2x)
=(tanx+tan2x)/(1-tanxtan2x)=tanx+tan2x1−tanxtan2x
=(tanx+(2tanx)/(1-tan^2x))/(1-(tanx*2tanx)/(1-tan^2x)=tanx+2tanx1−tan2x1−tanx⋅2tanx1−tan2x
=((tanx(1-tan^2x)+2tanx)/(1-tan^2x))/((1-tan^2x-2tan^2x)/(1-tan^2x))=tanx(1−tan2x)+2tanx1−tan2x1−tan2x−2tan2x1−tan2x
= (3tanx-tan^3(x))/(1-3tan^2(x))=RHS=3tanx−tan3(x)1−3tan2(x)=RHS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
LHS=sin4xLHS=sin4x
=2sin2xcos2x=2sin2xcos2x
=4sinxcosx(1-2sin^2x)=4sinxcosx(1−2sin2x)
=cosx*4sinx(1-2sin^2x)=cosx⋅4sinx(1−2sin2x)
=(cosx)(4sinx-8sin^3x)=RHS=(cosx)(4sinx−8sin3x)=RHS