Question #a32b3

1 Answer
Mar 13, 2017

See proof below

Explanation:

We use

(a+b)^2=a^2+2ab+b^2

sin^2x+cos^2x=1

Dividing by cos^2x

sin^2x/cos^2x+1=1/cos^2x

tan^2x+1=sec^2x

tan^2x=sec^2x-1

Therefore,

LHS=(tanx+secx)^2

=tan^2x+sec^2x+2tanxcosx

=sec^2x-1+sec^2x+2tanxsecx

=2sec^2x+2tanxsecx-1

=RHS

QED