Question #1f5ff

2 Answers
Mar 12, 2017

Let us start with the LHS:

LHS = ((sintheta+costheta)/sintheta)-((costheta-sintheta)/costheta)LHS=(sinθ+cosθsinθ)(cosθsinθcosθ)

" " = ((sintheta+costheta)costheta-(costheta-sintheta)sintheta)/(sinthetacostheta) =(sinθ+cosθ)cosθ(cosθsinθ)sinθsinθcosθ

" " = ((sinthetacostheta+cos^2theta)-(costhetasintheta-sin^2theta))/(sinthetacostheta) =(sinθcosθ+cos2θ)(cosθsinθsin2θ)sinθcosθ

" " = (sinthetacostheta+cos^2theta-costhetasintheta+sin^2theta)/(sinthetacostheta) =sinθcosθ+cos2θcosθsinθ+sin2θsinθcosθ

" " = (cos^2theta+sin^2theta)/(sinthetacostheta) =cos2θ+sin2θsinθcosθ

" " = (1)/(sinthetacostheta) =1sinθcosθ

" " = 1/sintheta*1/costheta =1sinθ1cosθ

" " = csctheta*sectheta =cscθsecθ

" " = RHS \ \ \ \ QED

Mar 13, 2017

LHS=(sintheta+costheta)/sintheta-(costheta-sintheta)/costheta

=sintheta/sintheta+costheta/sintheta-costheta/costheta+sintheta/costheta

=cancel1+costheta/sintheta-cancel1+sintheta/costheta

=(cos^2theta+sin^2theta)/(sinthetacostheta)

=1/(sinthetacostheta)

=secthetacsctheta=RHS