Question #d7b02

2 Answers
Mar 8, 2017

See proof below

Explanation:

We need

cos^2x+sin^2x=1cos2x+sin2x=1

cscx=1/sinxcscx=1sinx

cotx=cosx/sinxcotx=cosxsinx

Therefore,

RHS=cos thetasintheta+cos^3thetacscthetaRHS=cosθsinθ+cos3θcscθ

=costhetasintheta+cos^3theta/sintheta=cosθsinθ+cos3θsinθ

=(costhetasin^2theta+cos^3theta)/sintheta=cosθsin2θ+cos3θsinθ

=(costheta(sin^2theta+cos^2theta))/sintheta=cosθ(sin2θ+cos2θ)sinθ

=costheta/sintheta=cosθsinθ

=cottheta=cotθ

=LHS=LHS

Q.E.DQ.E.D

Mar 8, 2017

see explanation

Explanation:

Let we take a right hand side to prove left hand side.

cos theta sin theta + cos^3 theta csc theta = cos theta sin theta + cos^3 theta * 1/sin thetacosθsinθ+cos3θcscθ=cosθsinθ+cos3θ1sinθ

multiply with

= (cos theta sin theta sin theta+ cos^3 theta) /sin theta=cosθsinθsinθ+cos3θsinθ

= (cos theta sin^2 theta + cos^3 theta) /sin theta=cosθsin2θ+cos3θsinθ

= (cos theta (1-cos^2 theta )+ cos^3 theta) /sin theta=cosθ(1cos2θ)+cos3θsinθ

note: sin^2 theta = 1 -cos^2 thetasin2θ=1cos2θ

= (cos theta - cancelcos^3 theta + cancelcos^3 theta) /sin theta

= cos theta /sin theta

= cot theta