Question #fbd74

2 Answers
Mar 19, 2017

(cos^2x + tan^2x - 1)/tan^2x =sin^2x

Work on left side:

(cos^2x + tan^2x - (cos^2x+sin^2x))/tan^2x

cos^2x cancels, leaving:

(tan^2x-sin^2x)/tan^2x

Change tan to sin/cos:

((sin^2x/cos^2x)-(Sin^2x/1))/(sin^2x/cos^2x)

Multiply (Sin^2x/1) by (cos^2x/cos^2x) to get a common denominator:

((sin^2x/cos^2x)-((Sin^2xcos^2x)/cos^2x))/(sin^2x/cos^2x)

((Sin^2x-sin^2xcos^2x)/cos^2x)/(sin^2x/cos^2x)

cos^2x cancels:

(sin^2x-sin^2xcos^2x)/sin^2x

Factor the numerator:

(sin^2x(1-cos^2x))/sin^2x

sin^2x cancels:

1-cos^2x which is also sin^2x = right side

Mar 19, 2017

LHS=(cos^2x + tan^2x - 1)/tan^2x

=( tan^2x - (1-cos^2x))/tan^2x

=( tan^2x - sin^2x)/tan^2x

= tan^2x/tan^2x - sin^2x/tan^2x

=1 - sin^2x/(sin^2x/cos^2x)

=1 - cos^2x=sin^2x=RHS