Question #c4d85 Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer P dilip_k Mar 7, 2017 Given that both #a and b in [pi/2,pi]# means they are in quadrant #II# So #sin a and sinb -> +ve# but #cosa and cosb -> -ve# Given #sina=2/3# So #cosa=-sqrt(1-(2/3)^2)=-sqrt5/3# Given #cosb=-1/4# So #sinb=sqrt(1-(-1/4)^2)=sqrt15/4# Hence #sin(a+b)# #=sinacosb+cosasinb# #=2/3*(-1/4)+(-sqrt5/3)*sqrt15/4# #=-(2+5sqrt3)/12# #cos(a-b)# #=cosacosb+sinasinb# #=(-sqrt5/3)*(-1/4)+2/3*sqrt15/4# #=(2sqrt15+sqrt5)/12# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 1099 views around the world You can reuse this answer Creative Commons License