How do you show that csctheta = (1+ sec theta)/(tan theta + sintheta)?

2 Answers
Feb 19, 2017

I like to convert everything to sine and cosine and go from there. Use the following identities to do so:

csctheta = 1/sintheta
sectheta = 1/costheta
tantheta = sintheta/costheta

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1/sintheta = (1+ 1/costheta)/(sintheta/costheta + sin theta)

1/sintheta = ((costheta + 1)/costheta)/((sin theta + sinthetacostheta)/costheta)

1/sintheta = (costheta + 1)/costheta * costheta/(sin theta + sinthetacostheta)

1/sintheta = (costheta+ 1)/costheta * costheta/(sintheta(1 + costheta))

1/sintheta = 1/sintheta

LHS = RHS

This identity has been proved.

Hopefully this helps!

Feb 19, 2017

RHS= (1+sec theta )/ (tanx + sinx)

= (1+sec theta )/ (sinx/cosx + sinx)

= (1+sec theta )/ (sinxsecx + sinx)

= (1+sec theta )/ (sinx(secx + 1))

=1/sinx=cscx=LHS

Verified