If #cotx+coty+cotz=0#, prove that #(tanx+tany+tanz)^2=tan^2x+tan^2y+tan^2z#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Shwetank Mauria Feb 1, 2017 Please see below. Explanation: As #cotx+coty+cotz=0#, we have #1/tanx+1/tany+1/tanz=0# i.e. #(tanxtany+tanytanz+tanztanx)/(tanxtanytanz)=0# or #tanxtany+tanytanz+tanztanx=0# #(sumsinx/cosx)^2=(tanx+tany+tanz)^2# and #sum(sinx/cosx)^2=tan^2x+tan^2y+tan^2z# #:.(tanx+tany+tanz)^2# #=tan^2x+tan^2y+tan^2z+2tanxtany+2tanytanz+2tanztanx# #=tan^2x+tan^2y+tan^2z+2xx0# #=tan^2x+tan^2y+tan^2z# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 2084 views around the world You can reuse this answer Creative Commons License