If cotx+coty+cotz=0, prove that (tanx+tany+tanz)^2=tan^2x+tan^2y+tan^2z?

1 Answer
Feb 1, 2017

Please see below.

Explanation:

As cotx+coty+cotz=0, we have

1/tanx+1/tany+1/tanz=0

i.e. (tanxtany+tanytanz+tanztanx)/(tanxtanytanz)=0

or tanxtany+tanytanz+tanztanx=0

(sumsinx/cosx)^2=(tanx+tany+tanz)^2

and sum(sinx/cosx)^2=tan^2x+tan^2y+tan^2z

:.(tanx+tany+tanz)^2

=tan^2x+tan^2y+tan^2z+2tanxtany+2tanytanz+2tanztanx

=tan^2x+tan^2y+tan^2z+2xx0

=tan^2x+tan^2y+tan^2z