If cotx+coty+cotz=0, prove that (tanx+tany+tanz)^2=tan^2x+tan^2y+tan^2z? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Shwetank Mauria Feb 1, 2017 Please see below. Explanation: As cotx+coty+cotz=0, we have 1/tanx+1/tany+1/tanz=0 i.e. (tanxtany+tanytanz+tanztanx)/(tanxtanytanz)=0 or tanxtany+tanytanz+tanztanx=0 (sumsinx/cosx)^2=(tanx+tany+tanz)^2 and sum(sinx/cosx)^2=tan^2x+tan^2y+tan^2z :.(tanx+tany+tanz)^2 =tan^2x+tan^2y+tan^2z+2tanxtany+2tanytanz+2tanztanx =tan^2x+tan^2y+tan^2z+2xx0 =tan^2x+tan^2y+tan^2z Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 2332 views around the world You can reuse this answer Creative Commons License