Prove that (1+cotx)/cscx-secx/(tanx+cotx)=cosx?

1 Answer
Jan 23, 2017

Please see below.

Explanation:

(1+cotx)/cscx-secx/(tanx+cotx)

= (1+cosx/sinx)/(1/sinx)-(1/cosx)/(sinx/cosx+cosx/sinx)

= (sinx+cosx)-(1/cosx)/((sin^2x+cos^2x)/(sinxcosx)

mutiplying numerator and denominator in first term by sinx

= (sinx+cosx)-(1/cosx)/(1/(sinxcosx)

= (sinx+cosx)-1/cosx xxsinxcosx

= sinx+cosx-sinx

= cosx