Question #e51b8

3 Answers
Jan 22, 2017

tan (x/2 + pi/4) = sec x + tan x

Explanation:

Use the trig identity:
tan (a + b) = (tan a + tan b)/(1 - tan a.tan b)
Call t = (x/2) and develop the left side
LS = tan (t + pi/4) = (tan t + tan (pi/4))/(1 - tan t.tan (pi/4))
Trig table gives tan (pi/4) = 1, there for:
LS = (1 + tan t)/(1 - tan t) = ((cos t + sin t)/(cos t))(cos t/(cos t - sin t)) =
LS = (cos t + sin t)/(cos t - sin t)
Multiply both numerator and denominator by (cos t + sin t), we get:
LS = (cos t + sin t)^2/(cos^2 t - sin^2 t)
Reminder:
(cos t + sin t)^2 = 1 + 2cos t.sin t = 1 + sin 2t
cos^2 t - sin^2 t = cos 2t.
LS = (1 + sin 2t)/(cos 2t) = 1/(cos 2t) + (sin 2t)/(cos 2t)
LS = sec 2t + tan 2t
Replace t by (x/2), we get
tan (x/2 + pi/4) = sec x + tan x

Jan 22, 2017

RHS=secx+tanx

=1/cosx+sinx/cosx

=(1+sinx)/cosx

=(cos^2(x/2)+sin^2(x/2)+2sin(x/2)cos(x/2))/(cos^2(x/2)-sin^2(x/2))

=(cos(x/2)+sin(x/2))^2/((cos(x/2)+sin(x/2))(cos(x/2)-sin(x/2)))

=(cos(x/2)+sin(x/2))/(cos(x/2)-sin(x/2))

=(cos(x/2)/cos(x/2)+sin(x/2)/cos(x/2))/(cos(x/2)/cos(x/2)-sin(x/2)/cos(x/2))

=(1+tan(x/2))/(1-tan(x/2))

=(tan(pi/4)+tan(x/2))/(1-tan(x/2)tan(pi/4))

=tan(x/2+pi/4)=LHS

Jan 22, 2017

Proof given below

Explanation:

tan (x/2 +pi/4)= (tan pi/4 + tan x/2)/(1- tan x/2 tan pi/4)

=(1+ tan x/2)/(1-tan x/2) = (cos x/2 +sinx/2)/(cos x/2- sin x/2)

Now multiply the numerator and denominator by (cos x/2 + sin x/2)

= (1+ 2sin x/2 cos x/2)/(cos^2 x/2 - sin^2 x/2) = (1+sin x)/cos x= sec x + tanx