Given tanP/tanQ=1/5=>tanQ=5tanP
Now LHS=cot(P+Q)=1/tan(P+Q)
=(1-tanPtanQ)/(tanP+tanQ)
=(1-5tanPxxtanP)/(tanP+5tanP)
=(1-5tan^2P)/(6tanP)
=((1-5tan^2P)xxcos^2P)/(6tanPxxcos^2P)
=(cos^2P-5sin^2P)/(6sinPxxcosP)
=(6cos^2P-5cos^2P-5sin^2P)/(3xxsinPxxcosP)
=(6cos^2P-5(cos^2P+sin^2P))/(3xxsin2P)
=1/3csc(2P)(6cos^2P-5)=RHS
Proved