Prove that (sinx-1)/(sinx+1)=(-cos^2x)/(sinx+1)^2?

2 Answers
Jan 15, 2017

LHS=(sinx-1)/(sinx+1)

=((sinx-1)(sinx+1))/((sinx+1)(sinx+1))

=(sin^2x-1)/(sinx+1)^2

=(-(cos^2x))/(sinx+1)^2=RHS

Proved

Jan 15, 2017

Please see below.

Explanation:

(sinx-1)/(sinx+1)

= ((sinx-1)(sinx+1))/((sinx+1)(sinx+1))

= (sin^2x-1)/(sinx+1)^2

= (-(1-sin^2x))/(sinx+1)^2

= (-cos^2x)/(sinx+1)^2