Question #9925d Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Noah G Jan 10, 2017 (sinx/cosx - 1)/(sinx/cosx + 1) = (1 - cosx/sinx)/(1 + cosx/sinx) ((sinx - cosx)/cosx)/((sinx + cosx)/cosx) = ((sinx - cosx)/sinx)/((sinx + cosx)/sinx) (sinx - cosx)/cosx * cosx/(sinx + cosx) = (sinx - cosx)/sinx * sinx/(sinx + cosx) (sinx - cosx)/(sinx + cosx) = (sinx - cosx)/(sinx + cosx) LHS = RHS Identity proved! Hopefully this helps! Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 2965 views around the world You can reuse this answer Creative Commons License