Question #a2c18

1 Answer
Jan 3, 2017

Leave one side unchanged and use algebra and trigonometric substitutions to make the other side the same as the unchanged side.

Explanation:

Verify:

cot^2(x)/(sin(x) + cos(x)) =(cos^2(x)sin(x) -cos^3(x))/(2sin^4(x) - sin^2(x))

To verify, I will only change the right side until it is the same as the left side.

Remove common factor of cos^2(x) from the numerator and a common factor sin^2(x) from the denominator:

cot^2(x)/(sin(x) + cos(x)) =(cos^2(x)(sin(x) -cos(x)))/(sin^2(x)(2sin^2(x) - 1)

substitute cot^2(x) into the numerator for cos^2(x)/sin^2(x):

cot^2(x)/(sin(x) + cos(x)) =(cot^2(x)(sin(x) -cos(x)))/((2sin^2(x) - 1)

Split 2sin^2(x) into sin^2(x) + sin^2(x)

cot^2(x)/(sin(x) + cos(x)) =(cot^2(x)(sin(x) -cos(x)))/((sin^2(x) + sin^2(x) - 1)

Substitute 1 - cos^2(x) for the second sin^2(x):

cot^2(x)/(sin(x) + cos(x)) =(cot^2(x)(sin(x) -cos(x)))/((sin^2(x) + 1 - cos^2(x) - 1)

The 1s cancel:

cot^2(x)/(sin(x) + cos(x)) =(cot^2(x)(sin(x) -cos(x)))/((sin^2(x) cancel(+ 1) - cos^2(x) cancel(- 1))

cot^2(x)/(sin(x) + cos(x)) =(cot^2(x)(sin(x) -cos(x)))/((sin^2(x) - cos^2(x))

The denominator is the difference of two squares and we know how that factors:

cot^2(x)/(sin(x) + cos(x)) =(cot^2(x)(sin(x) -cos(x)))/(((sin(x) - cos(x))(sin(x) + cos(x)))

The (sin(x) -cos(x))/(sin(x) -cos(x)) cancels:

cot^2(x)/(sin(x) + cos(x)) =(cot^2(x)cancel(sin(x) -cos(x)))/((cancel(sin(x) - cos(x)))(sin(x) + cos(x)))

cot^2(x)/(sin(x) + cos(x)) =cot^2(x)/(sin(x) + cos(x))

The right side is the same as the left side. Q.E.D.