Question #5d572

2 Answers
Dec 26, 2016

Using the definitions of csc and cot, along with the identities

  • sin(2x) = 2sin(x)cos(x)
  • cos(2x) = 2cos^2(x)-1

we have

csc(2x)+cot(2x) = 1/sin(2x)+cos(2x)/sin(2x)

=(1+cos(2x))/sin(2x)

=(1+(2cos^2(x)-1))/(2sin(x)cos(x))

=(2cos^2(x))/(2sin(x)cos(x))

=cos(x)/sin(x)

=cot(x)

Dec 26, 2016

See proof below

Explanation:

We use

cscx=1/sinx

sin2x=2sinxcosx

cos2x=2cos^2x-1

cotx=cosx/sinx

So,

csc2x+cot2x=1/(sin2x)+(cos2x)/(sin2x)

=(1+cos2x)/(sin2x)

=(1+cos^2x-1)/(2sinxcosx)

=(2cos^2x)/(2sinxcosx)

=cosx/sinx

=cotx

Q.E.D